The effect of trends of companies on the performance with regard to the mediator role of green supply chain management
(Case study: manufacturing companies Khorasan Razavi)

Mahmood Teimoori
MA in Industrial Management, Department of Management, Farabi Campus of Tehran University
Corresponding author: mahmood48203@yahoo.com

Abstract

The aim of this study is to evaluate effect of trends of companies on the performance with regard to the mediator role of green supply chain management. In this study of supply chain management has been used as a mediating factor. Data of this research were collected from 113 samples of managers of Khorasan Razavi companies using questionnaire and two sampling methods were used. The study is based on structural equation model and to data analysis Smart-PLS software was used. The study results indicate positive impact of cultural, local community and environmental dimensions on trends of organization on performance. The outcomes also showed cultural and environmental trends have positive and significant effect on green supply chain management. On the other hand, the mediating effect of green supply chain management on relationship between cultural and environmental trends and performance of the organization was established. The results of this study provide a good understanding for organizations managers in better implementation of green supply chain and lead them to identify affecting factors on organizational performance improvement through the trends of organization.

Keywords: the trends of organization, organizational performance, green supply chain management, manufacturing companies.
Introduction
Environmental issues have attracted much attention in recent years. Unfortunately, serious environmental problems such as ozone depletion, rapid destruction of rainforests, water and air pollution, global warming, acid rain and ..., threaten the quality of human life (Soltani, 2005). In the different industries assessment requirements and technologies selection are due to reduce the destructive environmental impact for their production activities in development. Today, customers are more willing to use biocompatible products (Chiniforoosh and Sheykhzadeh, 2010). Government regulations for obtaining environmental standards on the one hand and increasing growth customers demand for green products, green supply chain management concept and its management was emerged (Imani and Ahmadi, 2009). Green supply chain management is one of areas has been the influence of being green. Green supply chain is the integration of environmental thinking with supply chain. Environment concepts have been accepted by lot of business (Donghyun, 2012).
Historically the main focus of operations management has been on continuous improvement and excellence through the development and implementation of design strategies to improve organizational performance. Current economic conditions has made difficult for organizations to achieve sustainable competitive advantage and almost without macro focus on the entire supply chain, as well as according to it, integrated conditions in the supply chain of organization is impossible (Lomos et al., 2008). There are many factors that can affect on the stability of supply chain activities. These factors including organizational culture, environmental trends, local communities, social trends and so on (Mariadosset al., 2016). Each of them as an influential factor has both positive and negative impact. As a result, for a successful and sustainable supply chain the evaluation of the impact of these factors is very important. Today, supply chain managers in leading companies through creation of compliance and satisfaction from the environmental perspective throughout the green supply chain are trying take advantage from green logistics and improve their environmental performance throughout the green supply as a strategic interest for the benefit of sustainable competitive advantage and setting their targets on three important topics: Green design (product), green manufacturing (process) and recycling the products (Boks, & Stevels, 2007).
In the past, product life cycle included processes from the design phase to consumption (Birou ,, et al., 1998), while based on the environmental view, including processes of raw material procurement, construction design, use of recycling and reuse, and forming a close cycle of materials flow to reduce resource consumption and reducing harmful environmental effects (Stonebraker & Liao, 2006)). In fact, the basic of green supply chain is integration, of environmental management and supply chain management to control environmental impacts in the product life cycle by sharing information and coordination and cooperation of all members of the chain (Srivastava, 2007).
Investment strategy for the improvement of the environmental performance of the supply chain, will have advantages and benefits such as saving energy, reducing emissions, reducing waste elimination, creating value for customers and ultimately increase productivity for manufacturing and service organizations (Imani and Ahmadi, 2009).
Organizational trends are a hidden and internal philosophy that identifies and guides the internal and external activities (Kotler, 2000). As a result, what ultimately define organizational performance is their main trends that could lead to the success or failure of an organization,
especially if the absence of green supply chain management activities is run, because these activities require special trends of the organization.

According to what was said, the aim of this study is the investigation of effect of trends of companies on the performance with regard to the mediator role of green supply chain management. The investigation is continued such that firstly the theoretical foundation of the study is presented, then the hypotheses and research model, will be explained in section 3, research methodology. In the fourth section findings and outputs will be presented. Finally, in section five, conclusions and recommendations will be discussed.

Theoretical foundations and background of the research (literature review)

Organizational performance

Performance literally means the status or quality of work. So, organizational performance is a general structure which refers to operations of an organization. The most famous definition of performance has been provided by Indigo (2002: 8: "The process of efficiency quality explanation and the efficiency of past actions". According to this definition, the performance is divided into two components: 1) efficiency which describes how to use the resources by organization inn in the production of products or services, meaning the relationship between the real and the ideal combination of inputs to produce specific outputs; and 2) effectiveness that describes the degree of achieving to organizational goals. These goals are usually in the form of appropriateness (the degree of compliance of outputs with the customer needs) availability (accessibility) (aspects such as frequency, providing among priority groups, and physical gap), and quality (the degree of required standards fulfillment) (Dalrive and Versington, 1996). Moulin (2002: 188) in his definition about performance assessment on how to manage and value creation focuses follows: assessment of organizations management and their value creation for customers and other beneficiaries. As Perth (2005) insists, Mulin’s defining is richer. Because, assessment word (evaluation) covers both the quality and quantity. In addition, as Nili (2005) points out, value creation for beneficiaries has a key role in organizational success. Undoubtedly, managers need to know how key beneficiaries perceive them, and explanation of this in performance definition, encourage organizations to measuring the beneficiaries perception.

Supply Chain Management

With the globalization of industry supply chain management has become important and competition among supply chains likely remains as an important element in global competition around the world (Mozaffari et al., 2013). The advantage of using supply chain management is caused by the ability of a company to use the entire network of suppliers, sellers, buyers and customers (Davis & Spekman, 2004). The aim of supply chain is minimizing the total system cost while maintaining customer satisfaction and reduced inventory costs and transportation costs (Donghyun, 2012).

Supply chain management has three objectives:
• Earning the right product at the required time with the lowest cost
• inventory as low as possible
• Provide superior customer service and reduce production cycle time (Boubekri, 2001)

The GSCM criteria have been used to explain green planning, materials control and external information flow. The researchers have divided these criteria into three categories: strategic,
intra-organizational and internal service quality which causes suppliers selection challenge of green buyers to improve the competitiveness statue of companies (Ming-Lang, et al., 2014). In the history of supply chain management, multiple performance criteria based on costs, responding to customer and financial indicators are observed. Four indicators of cost, quality, delivery and flexibility are the most famous indicators of industrial performance (Skinner, 1969):

- Costs for industrial companies are very important and represents direct material costs, productivity of utilize all the capabilities and inventory levels in a company. The relationship among supply chain management of performance costs is very high (Cachon, & Fisher, 2000).
- The quality includes supplier involvement in continuous improvement and applying of total quality management (TQM) systems is somehow one of important indicators in supply chain management (MacDuffie, & Helper, 1997).
- Delivery performance is generally divided into two subsets, speed and reliability. Speed refers to degree of responding to customer like cycle time of an order (Salvatore, et al., 2001).
- Flexibility as a performance indicator in the supply chain is important. Supply chain flexibility as the system's ability to adapt with fluctuations in volume and timing created by suppliers, industrialist and customers (Suarez, 1995).

With reviewing previous research it is determined that environmental performance is not considered by most organizations and traditionally in the history of operations management on performance indicators related to cost, quality, delivery and flexibility have been emphasized. More recently, international environmental conventions have forced organizations also add environmental performance to this index (Stephan, 2003).

Green supply chain

Green is a meaning to demonstrate compliance with environmental, social justice, economic development and being well. Green concept is more extensive than environmental protection which just emphasizes on waste reduction. Green industry is a sustainable industry, including recycling, pollution prevention, energy conservation through the production, use of recycling which includes all cases of the purchase of production material, packaging processing, transportation, marketing and management of the waste (Yao-Fen, et al., 2013).

Green chain is a set of internal and external measurements of firm throughout the supply chain to improve the environment and prevent pollution (Nasseri and Taheri, 1385). Green supply chain including green shopping, green production, green distribution, green marketing and reverse logistics (Chiniforoosh and SheikhZadeh, 2010). Green supply chain management structure is shown in figure 1.

In fact, the base of the supply chain management is integration of environment management and green supply chain management to control the destructive environmental impact in product life cycle by sharing information, coordination and cooperation of all members of the supply chain. Sectors involved in the supply chain have mutual relations so that by changing one variable, several variables in the supply chain will be affected. Supply chain is divided into three sections (Imani and Ahmadi, 2009).

Internal logistics: all activities related to the receipt, storage and handling of raw materials. Choose how to transport the goods has a large impact on the environment. Raw material handling operations, accompanies with economic and environmental benefits for the organization. Improvement of transit operations of raw materials, causes financial savings for distribution...
channel members and due to less use of natural resources will be beneficial to the environment (Walton, et al., 1998).

Green Production: Production includes the entering of raw materials and turning of them into finished goods through the activities of the assembly, construction and packaging. Goods inventory management of important in the entire supply chain, which in most of its decisions environmental costs and potential social costs is not considered. Green production includes factors such as clean production, product design taking into account the environment, and pure manufacturing (Duber-Smith, 2005).

External logistics: external logistics deal with finished goods and with higher added value and controllable variables. Logistics involves all physical distribution activities and includes the collection, saving and distribution of made goods among buyers. Most decisions in external logistics require consideration market, customer, product and company resources. With the reduction of operational logistics managers are able to run their operations with maximum efficiency and minimal inventory reducing or even eliminating the energy which plays an important role in protecting the environment (Sheu, et al., 2005).

The trends of organization:
Organizational trend is a hidden and internal philosophy that identifies and guides the internal and external activities (Kotler, 2000). Studies have shown that the trends of companies can be understood as a value with the ability to direct strategic plans (Ge & Ding, 2005). There is general agreement on the fact that the trends of the organization cause the behaviors of it are predictable. The concept of the organization trend from two strategic visions, like creating a choice right to compete with rivals through capabilities derived from business culture and organization business and from structural landscape is like companies trend to do business in a certain way which may resulted in integration of the company’s main activities into two parts of tactical and operational (Mariadoss et al. 2015).

Trends can be divided into four dimensions: environmental, cultural, social and local communities. The environmental trends is one of the important environmental aspects of large companies which refers to the internal values and ethical standards, according to the company's environmental commitment (Banerjee, 2002), the importance of the preservation of biophysical environment and understanding of general environmental issues (Banerjee et al., 2003). Social trends reflect the long-term concerns and interests of organization to consumers and society's prosperity and interests (Kang & James, 2007). Companies who have this trend are usually able to understand the conflict in the profit criterion of company and consumer, public interest and satisfaction (Kotler, 2000).

The trend to culture refers to the company's commitment to carry out business activities without compromising the integrity of the home culture in doing things. Research has shown that multinationals companies is better have a sense of responsibility in relation to culture of society in which it operates and respect it (Murphy & Poist, 2003). The trends of local communities also point to the importance of communities historically in its activities. Thus organizations giving importance to empathy about the history and nature of a society and local people respond to their needs in this regard. In this regard the use of local media is one of local trends of organizations (Jankowski, 2006).
The theoretical framework of research:
The aim of this study was to investigate the influence of company’s trends on performance. In this study, the mediating role of green supply chain management in this process has been also studied. Thus the resulted conceptual model for this research will be as figure (1) that based on which three main hypotheses can be considered for this model.

Figure 1 The conceptual model of study
Figure 1 The conceptual model of study

Since the 1980s, many researchers have emphasized the financial scales constraints and performance-based scales (Dixon et al., 1990; Johnson and Kaplan, 1987) and have required other affecting factors on the performance. In the field of organizational theories also many studies have been done in the areas of management, but these researches are not extensive in supply chain (Liu et al., 2011). Green supply chain activities is a process that requires the organization involvement with the external environment and is impacted heavily behalf it. In fact, organizational pressures will be social rules, regulations and expectations that are effective in forming the agenda of green supply chain (Hajmos et al., 2014), and impress type of activities, but the impression is not always and in all the same.

Green supply chain management is a broad concept which its domain is from green buying to integrated management of useful life cycle of a product from suppliers to customers and logistics and reverse (Zhou et al., 2008). Active producers trying to implementation of green supply chain practices at home and coordination and expansion of it with their external members (Valtu et al., 1998). The implementation of internal and external green supply chain practices will ensure that the organization's activities comply with social concerns (Lai et al., 2012), and on the other hand will reduce risk, increase confidence, enhance creativity and... (Zhou et al., 2013), while its non-performance will lead to lack of implementation of social responsibility, more pressure, increased risk and... (Soring et al., 2008).

On the other hand organization trends which are recognized by the four dimensions, can effect on performance largely. Respect of organization to environment, people, society, culture and history can stimulate people's loyalty to the organization's products and services and can have a great impact and be a guarantee for the success or failure of the organization.
Having a sense of responsibility of organization towards people and customers and what is important to them can be a promo to introduce and promote the positive image of companies to the community. On the other hand, environment-friendly behaviors and a green supply chain management is of important criteria that in recent years have attracted much attention from customers and the community in order to assess the company's performance. If people evaluate the companies as responsible and accountable organizations to respect the environment can leave a positive impact the performance and reputation of the organization and strengthen it.

Based on what is ever said, research hypotheses are presented as following:

H1a: Environment trends of organization have a positive impact on the performance of the organization.

H1b: Cultural trends of organization have a positive impact on the performance of the organization.

H1c: Social trends of organization have a positive impact on the performance of the organization.

H1d: Local community trends of organization have a positive impact on the performance of the organization.

H2a: Environment trends of organization have a positive impact on the supply chain management.

H2b: Cultural trends of organization have a positive impact on the supply chain management.

H2c: Social trends of organization have a positive impact on the supply chain management.

H2d: Environment community trends of organization have a positive impact on the supply chain management.

H3: Green supply chain management has a positive and significant impact on the performance of the organization.

H4a: Green supply chain management has intermediary positive impact on the relationship between environmental trends and performance of the organization.

H4b: Green supply chain management has intermediary positive impact on the relationship between cultural trends and performance of the organization.

H4c: Green supply chain management has intermediary positive impact on the relationship between social trends and performance of the organization.

H4d: Green supply chain management has intermediary positive impact on the relationship between local community trends and performance of the organization.

Research methodology

The structure of this study is designed based on structural equation modeling, so Partial Least Squares (PLS) was used to analyze the data. Because firstly, this method does not rely on presumptions such as normal distribution of observed reagents as and high volume of samples (Azar et al., 2012). Secondly, according to Chin (1998), this method is used to predict and explore possible relationships for (Fazli and Aminafshar, 2014). In other words, according to Igbaria and Ivaria (1995), unlike the covariance-based methods that attempt to data consistency with theoretical model of research, this method seeks to explore the theory that lies in the data (Houshangi et al., 2016). As a result, in the absence of established theory and complexity of the problems this method has been used.

Hensler and colleagues (2009), to estimate the path modeling propose Partial Least Squares (PLS) method in which the sample size equal to or greater than the following. 1) Ten times more
than the number of the structural measures that has the highest number of compound reagents, 2) Ten times more than structural paths which ended to a specific structure on the track inside model (Fazli et al., 2013). According to the model and rule listed, 74 collected questionnaires are more than the minimum required sample size.

To assess and measure the effect of variables on each other a questionnaire consists of 5 sections has been used. This standard questionnaire has been adapted from Maryados et al (2016) research, however, the reliability and validity using different tests for structures and reagents has been examined individually that have been fully explained in results section.

Research findings
The findings of this research are divided into two general categories. The first findings allocated to the reliability and validity of structures and reagents that for this purpose the test of measuring pattern involving the validity (internal consistency) and validity (divergent validity) have been used. To investigate the validity of the structures, three criteria proposed by Fresnel and Larker that includes:1) Combined credit 2) Average extracted variance, and 3) The validity of each of items have been used (Fornell, C., & Larcker, 1981, p.48). In order to investigation of combined reliability were used. Dylan - Goldstein coefficient (pc) and Cronbach's alpha for all structures is more than the 0/796 and 0/867, respectively which is more than the minimum required amount of 0/7. Also average extracted variance for all structures is more than 0/577, which is more than the minimum required amount of 0/5. Table (1) shows the combined reliability values, Cronbach's alpha and average extracted variance (AVE) for each construct.

Table 1 The results of variables reliability test

<table>
<thead>
<tr>
<th>AVE</th>
<th>Cronbach's alpha</th>
<th>Pc</th>
<th>variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.809863</td>
<td>0.921870</td>
<td>0.94455</td>
<td>environmental trend</td>
</tr>
<tr>
<td>0.646591</td>
<td>0.863465</td>
<td>0.90143</td>
<td>cultural trend</td>
</tr>
<tr>
<td>0.703232</td>
<td>0.875282</td>
<td>0.90421</td>
<td>social trend</td>
</tr>
<tr>
<td>0.620326</td>
<td>0.796305</td>
<td>0.86713</td>
<td>local community trend</td>
</tr>
<tr>
<td>0.577641</td>
<td>0.852902</td>
<td>0.89107</td>
<td>Green Supply Chain Management</td>
</tr>
<tr>
<td>0.625980</td>
<td>0.899610</td>
<td>0.92106</td>
<td>Organization performance</td>
</tr>
</tbody>
</table>

In the partial least squares method for reliability of reagents, factor loading for each reagents must be higher than 0/7 (Fornell, C., & Larcker, 1981, p.49). Baidu states, when we can keep the factor loadings which are less than 0/7, the average variance extracted of their construct is more than 0/5 (Azar et al., 2012, p. 158). The values of all factor loadings of reagents is higher than 0/7. Factor loadings values are provided in the table (2).
Table 2 Factor Loadings

<table>
<thead>
<tr>
<th>Factor</th>
<th>SO</th>
<th>OP</th>
<th>LPO</th>
<th>GSCM</th>
<th>EO</th>
<th>CO</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>cultural trend 1</td>
<td>0.116955</td>
<td>0.681349</td>
<td>0.336810</td>
<td>0.592093</td>
<td>0.439209</td>
<td>0.818668</td>
<td>cultural trend 1</td>
</tr>
<tr>
<td>cultural trend 2</td>
<td>0.030643</td>
<td>0.649805</td>
<td>0.346128</td>
<td>0.596261</td>
<td>0.389083</td>
<td>0.805402</td>
<td>cultural trend 2</td>
</tr>
<tr>
<td>cultural trend 3</td>
<td>0.013275</td>
<td>0.589599</td>
<td>0.331357</td>
<td>0.477611</td>
<td>0.389044</td>
<td>0.788454</td>
<td>cultural trend 3</td>
</tr>
<tr>
<td>cultural trend 4</td>
<td>-0.038966</td>
<td>0.674710</td>
<td>0.363116</td>
<td>0.566167</td>
<td>0.364688</td>
<td>0.815222</td>
<td>cultural trend 4</td>
</tr>
<tr>
<td>cultural trend 5</td>
<td>0.084718</td>
<td>0.612105</td>
<td>0.306397</td>
<td>0.552073</td>
<td>0.371912</td>
<td>0.792349</td>
<td>cultural trend 5</td>
</tr>
<tr>
<td>environmental trend 1</td>
<td>0.037132</td>
<td>0.563108</td>
<td>0.306261</td>
<td>0.465684</td>
<td>0.917009</td>
<td>0.464691</td>
<td>environmental trend 1</td>
</tr>
<tr>
<td>environmental trend 2</td>
<td>-0.013834</td>
<td>0.598439</td>
<td>0.406331</td>
<td>0.531301</td>
<td>0.897341</td>
<td>0.468255</td>
<td>environmental trend 2</td>
</tr>
<tr>
<td>environmental trend 3</td>
<td>0.048687</td>
<td>0.527407</td>
<td>0.347431</td>
<td>0.467931</td>
<td>0.912181</td>
<td>0.402653</td>
<td>environmental trend 3</td>
</tr>
<tr>
<td>environmental trend 4</td>
<td>0.016502</td>
<td>0.499829</td>
<td>0.340258</td>
<td>0.441100</td>
<td>0.893046</td>
<td>0.408187</td>
<td>environmental trend 4</td>
</tr>
<tr>
<td>Supply Chain Management 1</td>
<td>0.046904</td>
<td>0.585923</td>
<td>0.396156</td>
<td>0.706208</td>
<td>0.754604</td>
<td>0.469950</td>
<td>Supply Chain Management 1</td>
</tr>
<tr>
<td>Supply Chain Management 2</td>
<td>0.091311</td>
<td>0.707997</td>
<td>0.378226</td>
<td>0.825176</td>
<td>0.825176</td>
<td>0.493945</td>
<td>Supply Chain Management 2</td>
</tr>
<tr>
<td>Supply Chain Management 3</td>
<td>0.097814</td>
<td>0.586757</td>
<td>0.417652</td>
<td>0.754604</td>
<td>0.469950</td>
<td>0.497515</td>
<td>Supply Chain Management 3</td>
</tr>
<tr>
<td>Supply Chain Management 4</td>
<td>0.076488</td>
<td>0.607282</td>
<td>0.398641</td>
<td>0.720332</td>
<td>0.314400</td>
<td>0.500800</td>
<td>Supply Chain Management 4</td>
</tr>
<tr>
<td>Supply Chain Management 5</td>
<td>0.163519</td>
<td>0.654183</td>
<td>0.434957</td>
<td>0.744387</td>
<td>0.343278</td>
<td>0.566919</td>
<td>Supply Chain Management 5</td>
</tr>
<tr>
<td>Supply Chain Management 6</td>
<td>0.006408</td>
<td>0.390046</td>
<td>0.798522</td>
<td>0.363802</td>
<td>0.271612</td>
<td>0.216713</td>
<td>Local community trend 1</td>
</tr>
<tr>
<td>Local community trend 1</td>
<td>-0.127718</td>
<td>0.407453</td>
<td>0.796664</td>
<td>0.329510</td>
<td>0.326350</td>
<td>0.341093</td>
<td>Local community trend 2</td>
</tr>
<tr>
<td>Local community trend 2</td>
<td>0.016917</td>
<td>0.407709</td>
<td>0.796720</td>
<td>0.435995</td>
<td>0.345232</td>
<td>0.354065</td>
<td>Local community trend 3</td>
</tr>
<tr>
<td>Local community trend 3</td>
<td>0.047200</td>
<td>0.462226</td>
<td>0.716367</td>
<td>0.484756</td>
<td>0.290670</td>
<td>0.392739</td>
<td>Local community trend 4</td>
</tr>
<tr>
<td>Local community trend 4</td>
<td>0.041495</td>
<td>0.835786</td>
<td>0.435107</td>
<td>0.744504</td>
<td>0.520995</td>
<td>0.652343</td>
<td>Organization performance 1</td>
</tr>
<tr>
<td>Organization</td>
<td>0.013228</td>
<td>0.817349</td>
<td>0.419142</td>
<td>0.743164</td>
<td>0.478136</td>
<td>0.689446</td>
<td>Organization</td>
</tr>
</tbody>
</table>
Chen recommended for evaluation of the structures validity, the square root of the average variance extracted of structures must be greater than their correlation with other structures that indicate correlation of structure with its markers is more than its correlation with other structures (Chin, 1998, p. 42). The results of structures validity are presented in table (3).

Table 3 Matrix of correlation and square root average variance extracted

<table>
<thead>
<tr>
<th>SO</th>
<th>OP</th>
<th>LPO</th>
<th>GSCM</th>
<th>EO</th>
<th>CO</th>
<th>0/899</th>
<th>0/948</th>
<th>0/759</th>
<th>0/787</th>
<th>0/790</th>
<th>0/838</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0.054734</td>
<td>0.791781</td>
<td>0.488175</td>
<td>0.648820</td>
<td>0.533621</td>
<td>0.622772</td>
<td>Organization performance 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.121166</td>
<td>0.783142</td>
<td>0.375221</td>
<td>0.597704</td>
<td>0.448418</td>
<td>0.686523</td>
<td>Organization performance 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.056776</td>
<td>0.793243</td>
<td>0.354380</td>
<td>0.497774</td>
<td>0.450245</td>
<td>0.530358</td>
<td>Organization performance 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.081552</td>
<td>0.754457</td>
<td>0.413287</td>
<td>0.617394</td>
<td>0.465747</td>
<td>0.571334</td>
<td>Organization performance 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.160557</td>
<td>0.801610</td>
<td>0.451164</td>
<td>0.750599</td>
<td>0.487192</td>
<td>0.662563</td>
<td>Organization performance 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.869885</td>
<td>0.038879</td>
<td>-</td>
<td>0.113989</td>
<td>0.043090</td>
<td>-0.009774</td>
<td>Social trend 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.825611</td>
<td>0.094449</td>
<td>0.050563</td>
<td>0.084544</td>
<td>0.012147</td>
<td>0.039623</td>
<td>Social trend 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.744314</td>
<td>-</td>
<td>0.029663</td>
<td>0.070742</td>
<td>0.026128</td>
<td>-</td>
<td>0.092659</td>
<td>Social trend 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.857629</td>
<td>0.073173</td>
<td>-</td>
<td>0.055392</td>
<td>0.059333</td>
<td>0.005217</td>
<td>0.120521</td>
<td>Social trend 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The second category of the findings of this research allocated to test the structural model and hypotheses. For this purpose, the path coefficient and coefficient of determination which has been obtained by the PLS algorithm and software Smart-PLS have been used. The path coefficient shows the share of each of the predictor variables in explaining the variance of criterion variable. The coefficient of determination is also indicative of the explained variance.
of criterion variable by predictor variables. The value of path coefficients between the main structures and coefficients of determination are shown in figures (2, 3). To calculate the statistic T, bootstrap algorithm with 500 sub-samples has been used. In addition to direct effects, indirect effects have also been calculated. The value of path coefficients and statistics T, indirect effect, total effect with the result of the main hypotheses and indices are provided in table (4).

Table 4 Path coefficients, T statistics and hypothesis result

<table>
<thead>
<tr>
<th>result of the test</th>
<th>indirect effect</th>
<th>statistics T</th>
<th>direct effect</th>
<th>hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>approved</td>
<td>-</td>
<td>2/045</td>
<td>0/197</td>
<td>H1a</td>
</tr>
<tr>
<td>disapproved</td>
<td>-</td>
<td>0/902</td>
<td>0/073</td>
<td>H1b</td>
</tr>
<tr>
<td>approved</td>
<td>-</td>
<td>5/742</td>
<td>0/497</td>
<td>H1c</td>
</tr>
<tr>
<td>approved</td>
<td>-</td>
<td>2/237</td>
<td>0/235</td>
<td>H1d</td>
</tr>
<tr>
<td>approved</td>
<td>-</td>
<td>2/256</td>
<td>0/157</td>
<td>H2a</td>
</tr>
<tr>
<td>disapproved</td>
<td>-</td>
<td>0/192</td>
<td>0/012</td>
<td>H2b</td>
</tr>
<tr>
<td>approved</td>
<td>-</td>
<td>5/055</td>
<td>0/377</td>
<td>H2c</td>
</tr>
<tr>
<td>disapproved</td>
<td>-</td>
<td>1/550</td>
<td>0/079</td>
<td>H2d</td>
</tr>
<tr>
<td>approved</td>
<td>-</td>
<td>5/260</td>
<td>0/450</td>
<td>H3</td>
</tr>
<tr>
<td>approved</td>
<td>0.088</td>
<td>-</td>
<td>-</td>
<td>H4a</td>
</tr>
<tr>
<td>approved</td>
<td>0.032</td>
<td>-</td>
<td>-</td>
<td>H4b</td>
</tr>
<tr>
<td>approved</td>
<td>0.223</td>
<td>-</td>
<td>-</td>
<td>H4c</td>
</tr>
<tr>
<td>approved</td>
<td>0.105</td>
<td>-</td>
<td>-</td>
<td>H4d</td>
</tr>
</tbody>
</table>
Figure 2 The value of path coefficients and the coefficients of determination between organizational indices, performance and green supply chain management
Conclusion

Green supply chain management is the integrator of supply chain management with environmental requirements at all stages of product design, selection and supply of raw materials, manufacturing, transportation and distribution processes, delivery to the customer and finally after consumption, recycling and reuse management to maximize the amount of energy efficiency and resources, with improvement of entire supply chain performance. The green supply chain due to benefits of strategy for cost reduction and innovation in the production of goods (differentiation strategy) is considered as successful strategies in competitive advantage in manufacturing firms in recent years. Green supply chain leads to faster delivery of goods and service, latency reduction, reduction of costs and increase quality and generating more value added to customers because the supply of green products will lead to greater performance, efficiency, performance, reliability, and ultimately competitive advantage.

The trends of organization plays a pivotal role in the success or failure of an organization because of what will keep stable and successful the organizations in competitive and turbulent market, is having a firm base among loyal customers, and what cause customers be loyal to the organization is their positive attitude toward behavior and trends of organization for society, people, customer requirements, respect and accountability of the organization towards the customer and the environment. Based on the results of this study this is well evident. Outputs showed that the environmental, local community and cultural trends of organizations have positive effect on their performance, but social trend of organization had not a positive effect. The second part of hypothesis testing showed that social trends and local communities have not a significant and positive role on green supply chain management as well. However, significant and positive impact of cultural and environmental trends of organization and on green supply chain management was established. Accordingly, managers for success in their activities should show their desire to cultural principles and focus on the environment and preserving its in practice and costumers observe it actually in the organization’s main behaviors and services. In this case, by attracting customer’s confidence the success of performance and supply chain management will be improved. Finally, the mediator role of supply chain management between trends dimensions of the organization and confirmed performance and has a positive impact in this regard, and can accompanies the organization in terms of care and respect for people, culture, environment and local communities. So to have a better performance in the competitive environment and where environment and customers care for the environment it is better with the help of green supply chain management processes and procedures, we shall move to success. Accordingly, the bellow recommendations are proposed to managers:

• For achieving success should respect the factors and criteria of environment and reassure to customers about it.
• Having a green attitude and action to protect the environment can bring better performance for organizations.
• Promotion and advertising green supply chain management activities in order to protect the interests of society and a competitive advantage in today's turbulent world for this purpose that customers witnessed environmental protection activities of organization.

• Use local emblems and cultural symbols to implement green supply chain activities to achieve success in performance.
References

