Identifying and ranking factors determining Competitive Position in Financial services sector using AHP technique (Case study: Mellat Bank of Golestan province)

Masoumeh Rahdar
Department of Management, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran

Ehsan Sadeh*
Department of Management, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
*Corresponding Author Email: ehsan.sadeh@yahoo.com

ABSTRACT
In recent years, banking industry has been so competitive and banks are faced with many challenges in providing products and banking services to customers. This study attempts to investigate financial services sector of Mellat bank of Golestan province in a qualitative and analytical hierarchical process framework in order to improve quality and competitive position. Due to the importance of this issue, competitive position criteria were first identified using the existing literature and experts' opinion and then they were weighted and prioritized using AHP model. Criteria examined in this study include effective service, innovative service, network, location and pricing, that were analyzed using analytical hierarchical process (AHP) technique. The research findings show that pricing criterion is identified as the most important factor in Mellat bank and then effective services, innovative service, location and network are in the second to fifth place. The results also show that loan interest is in the first place and then the deposit accounts and bank location are in the second and third place. The results of the research will help managers to focus on their decisions to improve their activities and performances in line with the company's future goals.

KEYWORD: competitive position, service quality, effective service, innovative service, bank, analytical hierarchical process (AHP) technique.
1. Introduction
Banks are considered as vital artery of each country's economy and are considered as the important components of financial system of each country due to their important functions in financial system including: providing access to the payments system and liquidity, conversion of assets, risk management, information processing and monitoring borrowers (Taleblo and Bahman Poor, 2012). In today's competitive world, all organizations are looking to make a profit and increase their market share. Now banks are operating in a competitive environment and the variety of services offered in this industry is on the rise. They should offer customers services that meet their customers' needs better than competitors in order to succeed.

In fact, as the most important communication channel between the monetary and the natural sector, the banking sector is so important that any defects in the structure of the sector and the ineffectiveness of its operation sets the stage for occurrence of disorder in other sectors (Pezhoyan and Shafi, 2008). In today's competitive business world, customer satisfaction is the key factor that organizations are looking for. Today, many banks are trying to have more customer-oriented behavior through the use of various tools to improve customer relationships. In most banks, quality of service is still an important issue to maintain competitive advantage in the market. Quality of service is the most important and perhaps the first competitive weapon in financial services that compete in a market generally with various products. Considering the importance of this issue, the present study attempts to provide a coherent qualitative AHP framework to improve the quality and competitive position in the financial services sector of Mellat Bank in Golestan-Iran by understanding the significance of recognizing the banking industry in the economy of Iran.

2. A review of the research theoretical foundations and literature

2.1. Characteristics of service
A service is any act or performance that one party can offer to another that is essentially intangible and does not result in ownership of anything. Its production may or may not be tied to a physical product (Hosseini and Ghaderi, 2010). The service providers can have profit or non-profit purposes and its ownership can be private or public. The main features of services are Intangibility, Inseparability, Heterogeneity, and Perishability.

2.2. Types of advantage:
Competitive advantage is defined as a factor or combination of internal and external factors that make an organization much more successful than other organizations in a competitive environment and competitors cannot easily imitate it (Feurer and Chaharbaghi, 1995). Types of competitive advantage are Dynamic Competitive Advantage, Heterogeneous competitive advantage, evident competitive advantage, Compound competitive advantage and Sustained vs. temporary competitive advantage.

2.3. Research background
Jahani Bahmanniri et al. (2012) conducted a study entitled “evaluation and ranking of factors affecting the application of competitive strategy in banks using the AHP Fuzzy technique”. The results of this study showed that from among the main factors, customer relationship capabilities are the most important factor in selecting a competitive strategy; and from among the secondary factors, maintaining and strengthening relationships with customers, level of customer service, and understanding the needs and demands of customers are prioritized as first to third one.

In another study conducted by Shah Bandarizadeh et al. (2012) as “providing a model to identify factors affecting the retention of banking services customers”, the results indicated that customer satisfaction, services quality, and customer trust are three factors that have greater impact on the retention of bank customers. Hence, banks can take steps to retain their customers and create competitive advantage by investing in their employees to improve their behavior and attitudes and analyzing and improving the ways of providing banking services.
Paltayian et al. (2012) conducted a study to investigate the competitive position in the financial services space of Greek banks with the aim of proposing hierarchical, qualitative, and analytic process framework to improve quality and competitive position in the financial services sector. The findings showed that overall, six important factors including effective services, innovative products, pricing, working hours, network, and location were designed for bank selection criteria. The findings showed that pricing is the most important factor and then effective services and the bank location are respectively considered as the most important competitive criteria of banks.

Dauncan and Elliot (2004) investigated efficiency, providing service to customers and financial performance among Australian financial institutions in their study. The results showed that all measurements of financial performance (final interest, cost/income, return on assets, and capital) are positively correlated with providing service to customers. In contrast, the absence of a positive correlation between efficiency and financial performance suggests that financial institutions that have improved their financial performance through persistent pursuit of cost reduction may fundamentally step in the wrong direction.

Chiung Ju et al. (2009) studied the effect of customer perceptions on financial performance in financial services of a commercial bank in Taiwan. SEM results indicate that consumers’ perceptions positively affect financial performance and customers purchase financial services with dissimilar benefits.

Using the AHP method, Huu P.T. and Kar Y.H (2000) suggested that specified criteria for the selection of banks in Singapore include pricing strategy (high interest rates, low fees, and low interest rates on loans), product dimensions, service delivery, and advertising strategy.

Zinelin (1996) investigated bank's strategic positioning and some determinants of bank selection in a study in Sweden. He proposed bank's strategic positioning as a new basis for competition and the key factors determining the positioning are outlined as: friendly behavior of bank staff, managing banking transactions, efficiency in correcting mistakes, variety of loans, fast service delivery and decision making, competitive price of loans, working hours, competitive price of services, and high flexibility in granting loans.

Lu et al. (1994) conducted a study on identifying customer satisfaction variables and product position using an innovative approach resulted from combining AHP and QFD methods. Accordingly, they found 4 important factors including basic services, price, assurance, and quality in this regard.

3. Statement of problem:
A deep look at the surrounding environment reveals the fact that the world today is very different than in the past. In such an atmosphere, the key question is that how an organization can survive and get dominance over competitors? Or whether to succumb against strong rivals (Jahani et al., 2012). Managers are trying to become more aware of customers’ needs through understanding the real needs of the market, prioritizing products, or the product design. They even attempt to establish their strategies and procedures according to these needs (Paltayian et al., 2012). Competitive strategy must simultaneously become customers and competitors concerned (Jahani B. et al., 2012). Thus, the main question in this study is that: what are the effective factors determining the competitive position in the financial services sector of Mellat bank in Golestan-Iran and how are the priorities (weights) of these factors in comparison to each other using AHP multi criteria decision-making techniques?

4. Research method, analysis method, and findings
The present study has been conducted using an applied-descriptive research method (Hafeznia, 2006). The data have been collected based on a survey method and using questionnaires. Since the study is not based on statistical analysis and it is considered a type of operations research, there is no need to specify the statistical population and sample as well. According to Chen Tung Chen (2000), in such studies the team members should be selected from those who are key elements of the organization, have a deep and comprehensive understanding of the organization and are able to analyze their business. Accordingly,
25 of directors, experts, and senior specialists of Mellat bank in Golestan-Iran were identified and selected. The research method was based on four basic steps with regard to the concept of AHP:

4.1. The first step (research problem): identifying and ranking factors determining competitive position in the financial services sector of Mellat Bank in Golestan-Iran (developing the AHP hierarchical model):

First, AHP decision-making model should be designed considering the research literature as well as the opinions of experts in Mellat bank of Golestan-Iran in order to identify the determinants of competitive position in the financial services sector. The results of this step have been classified into five main criteria. Table 1 shows the resulting hierarchical model.

<table>
<thead>
<tr>
<th>Names</th>
<th>Criteria</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>Pricing</td>
<td>Loan Interest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deposit Accounts Interest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower Costs</td>
</tr>
<tr>
<td>A₂</td>
<td>Effective Services</td>
<td>Good Profitability of Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bias Error Correction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Courtesy, Speed, Accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Effective Services Delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layout Quality and Personnel Deployment</td>
</tr>
<tr>
<td>A₃</td>
<td>Location</td>
<td>Bank Location</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Place of Residence</td>
</tr>
<tr>
<td>A₄</td>
<td>Innovative Services</td>
<td>Consultation on Wealth Management, Asset Management, and Other Financial Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flexible Loan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Services for Youth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Profit Accounts</td>
</tr>
<tr>
<td>A₅</td>
<td>Network</td>
<td>ATM Machines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of Branches</td>
</tr>
</tbody>
</table>

4.2. The second step: calculating the weight of main factors (level 1)
In the second step, each of the main factors of the questionnaire was prepared and distributed according to the AHP questionnaire format (pairwise comparison) to obtain the approval of the experts and to calculate the relative importance (weight) of factors. The questionnaire includes a paired-comparison matrix of factors. Since level 1 has 5 criteria, the number of comparisons (or questions) will be equal to \(\frac{n(n-1)}{2} = \frac{5(5-1)}{2} = 10 \). After collecting the questionnaires completed by respondents, the inconsistency rate of each of them was examined separately. Finally, 25 questionnaires were analyzed and the views of subjects were combined using the Expert Choice Team software. This software has a wide range of features to obtain pairwise comparisons matrices for subjects and then to combine different matrices and to convert them into a single matrix. Individuals' matrices are obtained through the geometric mean of each element.
Table 2: the combined (geometric) matrix of group (paired) comparisons at level 1

<table>
<thead>
<tr>
<th>Main Criteria</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Weight</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1.882</td>
<td>2.207</td>
<td>1.903</td>
<td>1.855</td>
<td>0.325</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0.531</td>
<td>1.000</td>
<td>1.657</td>
<td>1.000</td>
<td>1.830</td>
<td>0.206</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0.453</td>
<td>0.603</td>
<td>1</td>
<td>0.836</td>
<td>1.367</td>
<td>0.148</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>0.525</td>
<td>1.000</td>
<td>1.196</td>
<td>1</td>
<td>2.151</td>
<td>0.200</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>0.539</td>
<td>0.546</td>
<td>0.731</td>
<td>0.464</td>
<td>1</td>
<td>0.120</td>
<td>5</td>
</tr>
</tbody>
</table>

IR=0.01<0.1

Figure 1: the weighted graph of effective criteria determining the competitive position in the financial services sector of Mellat Bank

The analysis of figure 1, calculated weights of the main effective criteria determining the competitive position in the financial services sector of Mellat bank, shows that granting facilities with the relative weight of 0.325, credit cards with the relative weight of 0.206, time deposit accounts with the relative weight of 0.200, saving accounts with the relative weight of 0.148, and joint venture with the relative weight of 0.120 are placed in the first to fifth ranks of importance, respectively.

Analyzing the calculations of table 1

For example, the geometric mean of entry a_{12} is calculated as follows:

$$a_{12} = (1 \times \ldots \times 4)^{1/5} = 1.882$$

According to the invertibility principle in AHP method, elements below the matrix diagonal are the inverse of elements above it. For example, the entry a_{21} is calculated as follows:

$$a_{21} = \frac{1}{1.882} = 0.531$$

The rest of the elements of the table are calculated the same way and are presented in table 4-1.

The calculation of weights at level 1 is described as follows: Thus, after calculating the geometric mean of Mellat bank experts’ opinions, the decision matrix is normalized using the following equation:

$$r_j = \frac{a_{ij}}{\sum_i a_{ij}}$$

For example, to obtain r_{11} and r_{21} entries of the normalized matrix first, all entries of the first column of the combined (geometric) matrix are added together:
\[
\sum_{i=1}^{5} a_{i1} = 1 + 0.531 + 0.453 + 0.525 + 0.539 = 3.048
\]

Then, \(a_{11} \) entry of the combined (geometric) matrix is divided by the sum of the first column (\(\sum_{i=1}^{5} a_{i1} \)):

\[
a_{11} = \frac{1}{3.048} = 0.325
\]

The rest elements of normalized matrix are calculated using the above formula. Table 3 shows the results of these calculations.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Row-wise Sum</th>
<th>Weight</th>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.328</td>
<td>0.374</td>
<td>0.325</td>
<td>0.366</td>
<td>0.226</td>
<td>1.619</td>
<td>0.325</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0.174</td>
<td>0.199</td>
<td>0.244</td>
<td>0.192</td>
<td>0.223</td>
<td>1.032</td>
<td>0.206</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0.149</td>
<td>0.120</td>
<td>0.147</td>
<td>0.161</td>
<td>0.167</td>
<td>0.743</td>
<td>0.148</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>0.172</td>
<td>0.199</td>
<td>0.176</td>
<td>0.192</td>
<td>0.262</td>
<td>1.002</td>
<td>0.200</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>0.177</td>
<td>0.109</td>
<td>0.108</td>
<td>0.089</td>
<td>0.122</td>
<td>0.604</td>
<td>0.120</td>
<td>5</td>
</tr>
</tbody>
</table>

After normalizing the group decision-making matrix, it is time to calculate the weight of components at level 1. The weight of each element is calculated using the row-wise mean method as follows:

For example, to calculate the weight of A, all the elements in the first row of the normalized matrix are added together first and then is divided by the number of all the main factors (here, 5 factors). Thus:

\[
\frac{\sum_{i=1}^{5} w_y}{5} = \frac{0.328 + 0.374 + 0.325 + 0.366 + 0.226}{5} = 0.323
\]

The rest of the weights are calculated in the same way using the above formula.

4.3. The third step: calculating the inconsistency rate of group decision matrix

The inconsistency rate (IR) of pairwise comparisons matrix should be calculated in order to trust the ranking (prioritization) and weights of criteria. The stages of calculating inconsistency rate are as follows:

4.3.1. The first stage: calculating the weighted sum vector (WSV):

\[
WSV = D \times W
\]

First, the pairwise comparisons matrix D (table 2) is multiplied by the relative weights vector (W):

\[
WSV = \begin{bmatrix}
1 & 1.882 & 2.207 & 1.903 & 1.855 \\
0.531 & 1 & 1.657 & 1 & 1.830 \\
0.453 & 0.603 & 1 & 0.836 & 1.367 \\
0.525 & 1 & 1.196 & 1 & 2.151 \\
0.539 & 0.546 & 0.731 & 0.464 & 1
\end{bmatrix} \times \begin{bmatrix}
0.325 \\
0.206 \\
0.148 \\
0.200 \\
0.120
\end{bmatrix} = \begin{bmatrix}
1.64 \\
1.04 \\
0.75 \\
1.01 \\
0.61
\end{bmatrix}
\]

4.3.2. The second stage: calculating the consistency vector (CV):

The elements of weighted sum vector are divided by the relative weights vector. The resulted vector is called Consistency Vector.
4.3.3. The third stage: calculating the largest eigenvalue of pairwise comparisons matrix (λ_{max}):

$$\lambda_{\text{max}} = \frac{5.05 + 5.07 + 5.07 + 5.06 + 5.07}{5} = 5.06 \quad (6)$$

4.3.4 The fourth stage: calculating the inconsistency index (II):

The inconsistency index is calculated as follows:

$$II = \frac{5.06 - 5}{5} = 0.01 \quad (7)$$

4.3.5. The fifth stage: calculating the inconsistency rate (IR):

The inconsistency rate is calculated using the following equation:

$$IR = \frac{II}{IRI} = \frac{0.01}{1.12} = 0.01 \leq 0.1 \quad (8)$$

In equation (8), IRI (inconsistency random index) is a value extracted from the relevant table. This value for a matrix with n=5 dimension is reported to be 1.12. Finally, the inconsistency rate of the desired matrix is equal to 0.01 (IR=0.01) and since it is lower than 0.1 ($IR \leq 0.1$), the pairwise comparisons are consistent.

4.4. The fourth step: calculating the weight of elements at level 2 (local weights):

The fourth step is calculating weights of effective secondary factors in each subgroup. Table 4 shows the result of these calculations.

<table>
<thead>
<tr>
<th>Pricing</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>Weights</th>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1.876</td>
<td>2.345</td>
<td>0.487</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>0.533</td>
<td>1</td>
<td>3.123</td>
<td>0.356</td>
<td>2</td>
</tr>
<tr>
<td>A_3</td>
<td>0.426</td>
<td>0.320</td>
<td>1</td>
<td>0.157</td>
<td>3</td>
</tr>
</tbody>
</table>

IR=0.05<0.1

The analysis of table 4, i.e. calculated weights of secondary factors of pricing, shows that loan interest with the relative weight of 0.487, the interest of deposit accounts with the relative weight of 0.356, and lower fees with the relative weight of 0.157 are in the first to third place in terms of importance, respectively. Finally, the inconsistency rate of the matrix is equal to 0.05 (IR=0.05) and since it is lower than 0.1 ($IR \leq 0.1$), the pairwise comparisons are consistent in terms of experts’ judgments.

<table>
<thead>
<tr>
<th>Effective Services</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>Weights</th>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>1</td>
<td>1.634</td>
<td>2.008</td>
<td>0.488</td>
<td>1.903</td>
<td>0.232</td>
<td>2</td>
</tr>
<tr>
<td>B_2</td>
<td>0.611</td>
<td>1</td>
<td>1.974</td>
<td>0.506</td>
<td>2.766</td>
<td>0.205</td>
<td>3</td>
</tr>
<tr>
<td>B_3</td>
<td>0.498</td>
<td>0.506</td>
<td>1</td>
<td>0.725</td>
<td>2.786</td>
<td>0.164</td>
<td>4</td>
</tr>
</tbody>
</table>
The analysis of table 5, i.e. calculated weights of secondary factors of effective services, shows that effective services delivery with the relative weight of 0.306, good profitability of services with the relative weight of 0.232, bias error correction with the relative weight of 0.205, courtesy, speed, accuracy with the relative weight of 0.164, and layout quality and personnel deployment with the relative weight of 0.093 are in the first to fifth place in terms of importance, respectively. Finally, the inconsistency rate of the matrix is equal to 0.03 (IR=0.03) and since it is lower than 0.1 (IR ≤ 0.1), the pairwise comparisons are consistent in terms of experts’ judgments.

Table 6: the pairwise comparisons matrix for secondary factors of location

<table>
<thead>
<tr>
<th>Location</th>
<th>C₁</th>
<th>C₂</th>
<th>Weights</th>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>1</td>
<td>2.297</td>
<td>0.697</td>
<td>1</td>
</tr>
<tr>
<td>C₂</td>
<td>0.435</td>
<td>1</td>
<td>0.303</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IR=0.00<0.1</td>
<td></td>
</tr>
</tbody>
</table>

The analysis of table 6, i.e. calculated weights of secondary factors of location, shows that bank location with the relative weight of 0.697 and place of residence with the relative weight of 0.303 are in the first and second place in terms of importance, respectively. Finally, the inconsistency rate of the matrix is equal to 0.00 (IR=0.00) and since it is lower than 0.1 (IR≤0.1), the pairwise comparisons are consistent in terms of experts’ judgments.

Table 7: the pairwise comparisons matrix for secondary factors of innovative services

<table>
<thead>
<tr>
<th>Innovative Services</th>
<th>D₁</th>
<th>D₂</th>
<th>D₃</th>
<th>D₄</th>
<th>Weights</th>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁</td>
<td>1</td>
<td>0.923</td>
<td>1.532</td>
<td>0.748</td>
<td>0.241</td>
<td>2</td>
</tr>
<tr>
<td>D₂</td>
<td>1.083</td>
<td>1</td>
<td>2.793</td>
<td>3.053</td>
<td>0.408</td>
<td>1</td>
</tr>
<tr>
<td>D₃</td>
<td>0.652</td>
<td>0.358</td>
<td>1</td>
<td>1.059</td>
<td>0.160</td>
<td>4</td>
</tr>
<tr>
<td>D₄</td>
<td>1.336</td>
<td>0.327</td>
<td>0.944</td>
<td>1</td>
<td>0.191</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IR=0.06<0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The analysis of table, i.e. calculated weights of secondary factors of innovative services, shows that flexible loan with the relative weight of 0.408, consultation on wealth management, asset management, and other financial services (insurance, leasing, stock) with the relative weight of 0.241, profit accounts with the relative weight of 0.191, and services for youth with the relative weight of 0.160 are in the first to fourth place in terms of importance, respectively. Finally, the inconsistency rate of the matrix is equal to 0.06 (IR=0.06) and since it is lower than 0.1 (IR≤0.1), the pairwise comparisons are consistent in terms of experts’ judgments.

Table 8: the pairwise comparisons matrix for secondary factors of network

<table>
<thead>
<tr>
<th>Network</th>
<th>E₁</th>
<th>E₂</th>
<th>Weights</th>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>IR=0.00<0.1</td>
<td></td>
</tr>
</tbody>
</table>
The analysis of table 8, i.e. calculated weights of secondary factors of network, shows that ATM machines with the relative weight of 0.790 and number of branches with the relative weight of 0.210 are in the first and second place in terms of importance, respectively. Finally, the inconsistency rate of the matrix is equal to 0.00 (IR=0.00) and since it is lower than 0.1 (IR≤0.1), the pairwise comparisons are consistent in terms of experts’ judgments.

5. Calculating the final weight of elements
The final weight of the elements of each group is equal to local weight of elements multiplied by the weight of their head (the main factors). In this way, the final rank of each element affecting the evaluation of professors is obtained. Table 9 shows the results of these calculations.

<table>
<thead>
<tr>
<th>Main Factors</th>
<th>Main Factors Weights</th>
<th>Secondary Factors</th>
<th>Local Weights of Secondary Factors</th>
<th>Final Weights</th>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.325</td>
<td>A₁</td>
<td>0.487</td>
<td>0.158</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0.206</td>
<td>B₁</td>
<td>0.232</td>
<td>0.047</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>0.148</td>
<td>C₁</td>
<td>0.697</td>
<td>0.103</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>0.200</td>
<td>D₁</td>
<td>0.241</td>
<td>0.048</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>0.120</td>
<td>E₁</td>
<td>0.790</td>
<td>0.090</td>
<td>4</td>
</tr>
</tbody>
</table>

The analysis of table 9:
The results of calculations (shown in table 9) indicate that Loan Interest with the relative weight of 0.158 is in the first place, Deposit Accounts Interest with the relative weight of 0.115 is in the second place, and Bank Location with the relative weight of 0.103 is in the third place in terms of their importance. On the other hand, Number of Branches with the relative weight of 0.025 is in the fifteenth place and Layout Quality and Personnel Deployment with the relative weight of 0.019 is in the sixteenth place of importance.
5. Conclusion
Due to the importance of this issue, competitive position criteria were first identified using the existing literature and experts' opinion and then they were weighted and prioritized using AHP model. The research findings show that pricing criterion is identified as the most important factor in Mellat bank and then effective services, innovative service, location and network are in the second to fifth place. The results also show that loan interest is in the first place and then the deposit accounts and bank location are in the second and third place. The results of the research will help managers to have alternative strategies to improve their activities and performances and will facilitate their decision-making. They should take into consideration the prioritization of factors in this research and take advantage of them in the development of relevant strategies. Also, it can be said that considering the basic needs of customers in the design of banking services can play an important role in elevating the position of Mellat Bank in customers’ minds.
Finally, it is suggested to examine the mentioned criteria or other factors, if any, using the AHP Fuzzy technique or TOPSIS to achieve more accurate and more comprehensive results for decision making.
References

