Reading Input Flooding and Listening Input Flooding: Do they Affect Iranian EFL Learners’ Grammar Knowledge

Mojgan Rashtchi
Islamic Azad University, North Tehran Branch
E-mail: mojgan.rashtchi@gmail.com

Leila Mohammad Yousefi
Islamic Azad University, North Tehran Branch
E-mail: sobhan3636@yahoo.com

Abstract

The present study investigated the effects of reading input flooding and listening input flooding techniques on Iranian EFL learners’ grammar knowledge. Participants were 50 intermediate EFL learners selected from a whole population pool of 68 based on the results obtained from Nelson test. To investigate the effect of input flooding on Iranian EFL learners’ grammar knowledge, the participants were randomly divided into two groups of 25; that is, reading input flooding group and listening input flooding group. After a grammar pretest, the reading flooded input group was exposed to the numerous examples of the target structures through reading while the listening group was given relatively the same task, but through listening. After the treatment, the participants took a grammar posttest. Independent samples t-test was run to analyze the data gathered from the learners’ performance on the pretest and posttest. The results of the study indicated that the reading input flooding group significantly outperformed the listening input flooding group.

Keywords: Input flooding, Listening Input Flooding, Reading Input flooding, Teaching Grammar.
Recently, the interest in the role of grammar in English language teaching has been resurgent (Hedge, 2009). Moreover, the theoretical and empirical evidence confirms the essential role of teaching grammar in the classroom, especially to adult learners. Studies on teaching grammar in SLA have attempted to explore whether particular grammatical structures could be taught through formal instruction (White, Spada, Lightbown, & Ratana, 1991). One type of formal instruction that is relevant to the present study and which has received considerable attention in recent SLA is input-based instruction. Theories of first language acquisition support the significant role of input as the sufficient condition for reasons specific to the particular theory as well (White, 2008). Input in grammar instructions have encountered crucial challenges on the part of the teachers; therefore, different techniques such as input enhancement and input flooding are suggested to tackle this issue. These methods of instruction can facilitate the process of input selection by L2 learners and point to the possible effects of focusing learners’ attention to the particular aspects of the input, and thus facilitate cognitive processing. It is generally approved today that input flood and input enhancement have facilitative roles in the acquisition of the language structures. The aim of enriched input (input flood and input enhancement) is to provide incidental rather than intentional language acquisition (AsadiAmirabadi, Biria, & Sedaghat, 2014).

Literature Review

Input enhancement is a way to direct learners’ attention to the target linguistic forms. Sharwood Smith (1993) defined input enhancement as “the process by which language input becomes salient to learners” (p.118). Moreover, he explored that when certain grammatical features in the input are inevitably non-salient, the learners lose opportunity to notice them. To put it differently, input enhancement refers to any purposeful attempt to speed the rate of noticing to the target forms. Shook’s study (1994) is one of the studies that showed the essential role of textual input enhancement in a second language context. Shook claimed that input enhancement is an effective technique for language development. Some studies have investigated that input enhancement and input flooding play crucial roles in language teaching (Dastjerdi, 2011; Hernandez, 2008; Lee, 2007; Rashtchi &Gharanli, 2010; Rikhtegar &Gholami, 2015; Simard, 2009; White, 1998) while others found no beneficial effect of input-based instructions (Izumi, 2002; Leow, 2001; Nemati&Motallebzade, 2013; Williams & Evan, 1998).

Similarly, input flooding is a technique in language teaching which increases the chance of noticing to the target structure. Input flooding is considered as an implicit technique of focusing on form, which provides opportunity to direct students’ attention to target structures. During the flooded input tasks, the input is saturated by “plentiful instances” of target structure in the audio and visual texts without any additional devices to catch learners’ attention. The idea behind input flood is that frequent target forms become more noticeable than infrequent ones, which produce opportunities to foster the rate of learning (Wagner-Gough & Hatch, 1975). Doughty and Williams (1998) argued that “It is sometimes possible to aim more or less implicitly to attract the learners’ attention to linguistic features and promote the processing of these features without providing any sort of explicit guidance” (p. 236). In their study, Fotos and Nassaji(2011) expressed that frequent occurrence of the same target form helps learners to allocate their attention to it, and thus the chances of its selection by the learners would increase.
Input flooding technique, as Wong (2005) stated, is the input, which is “saturated with the form that learners are expected to notice and learn. However, according to Wong, the form is not highlighted “in any way to draw attention to it” and learners are not told to” pay attention to the form” (p. 37). Rezvani (2011) conducted a study to explore the role of output task and input enhancement in the acquisition of collocations. The results revealed that input enhancement group outperformed the output group; however; the observed difference was not statistically significant. In their study, Balcom and Bouffard (2015) investigated the role of input flood and explicit instruction on learning adverb placement in L3 French. The results showed the beneficial effect of the flooded input in assisting learners to learn adverb placement. Rikhtegar and Gholami (2015) investigated the effects of pre-versus post-presentation input flooding via reading on the acquisition of simple past tense indicating the effective role of pre-and post-presentation input flooding on the acquisition of the simple past tense. Spada and Lightbown (1993) and Trahey and White (1993) found oral input flooding to be effective with elementary-school students whose L1 was French and who were learning ESL.

Reading is considered as a predominant source of comprehensible input (Krashen, 1993; Krashen, 1994). Decarrico and Larsen-Freeman (2002) pointed out that input enhancement and input flood are techniques that teachers use to catch the students’ attention to a certain feature such as a new grammar point or vocabulary. Accordingly, the aim of extensive reading is to flood learners with large quantities of L2 input and increase the principle of noticing (Manghubi, 2001). To put it differently, reading input flooding is implemented to improve the saliency of input in written form in order to facilitate learners’ noticing to the target form, and thereby to enhance their acquisition.

Furthermore, listening as another source of input can provide learners with a large amount of input. Through listening, learners can receive a wide variety of linguistic and non-linguistic information and can interpret the incoming input (Graham, 2006). In listening input flooding, the learners are bombarded with great quantities of input to listen before being encouraged to respond orally. Brown (2001) stated that “researchers put stress on the crucial role of mental process in converting input into intake. That is, the learners can be exposed to saturated input, but what counts is the linguistic information that they glean through conscious and subconscious attention” (p. 248). Therefore, converting input to intake plays a fundamental role in considering the role of listening in language acquisition.

The purpose of the study was to investigate the comparative effect of reading input flooding and listening input flooding on teaching grammar. Thus, the following research question was proposed:

RQ: Do reading input flooding and listening input flooding techniques similarly affect the grammar knowledge of Iranian EFL learners?

Method
Participants
The participants were 50 intermediate level students, whose proficiency level was controlled through Nelson test. They were selected from two intact samples of 68 students. The male and female participants were Persian native speakers with the age range of 19 to 30. They were
randomly assigned to two groups each containing 25 students, the reading input flooding group (Group A) and the listening input flooding group (Group B).

Instrumentation
Two instruments were used for data collection. The first instrument was Nelson proficiency test for examining the homogeneity of the participants. The test consisted of 50 items. The next instrument was a teacher-made grammar test used as the pretest and posttest. After the construction, the content validity of the test was examined by three experts. The reliability of the test estimated through KR-21 showed an acceptable index (r=.79).

Procedure

Pretest
After the administration of Nelson to 68 male and female EFL learners, 50 of them whose scores fell within one standard deviation below and above the mean were selected and divided into two groups. Then the teacher-made grammar test with 40 items was administered as the pretest.

Treatment
The experimental groups received the same instruction; the only difference was the channel through which the input was received. Group A was exposed to reading input flooding and Group B was bombarded by saliency of the input through listening. The treatment took two months, one session in each week and each session about 60 minutes. The classroom activities in both classes were selected from American English File 2 (Bowden, Latham King, & Hudson, 2008). Each session, a section of reading and listening parts were covered. One of the researchers was present every session to observe the classroom activities.

In this study, “Simple Present”, “Simple Past”, “Simple Future”, “Be going to”, and “Present Perfect” were taught in flooded input mode. For instance, in Group A, the teacher presented three or five examples using “present perfect” and asked the students to provide more examples of present perfect tense. Afterwards, the teacher divided the class into groups of five and asked them to write five to seven sentences using the new structure, and then read the examples to the class (the participants were exposed to many examples as flooded input). As the next step, the teacher asked the students to read the reading passage and find the target structures and read them out for the class.

In Group B, the participants were given relatively the same tasks, but through listening. For instance, like Group A, the teacher provided three or five examples using “present perfect” and asked the students to give more examples of present perfect. Then the students listened to a passage that included “present perfect” and summarized it using the new structure. The passage was played two times; first, they listened and then took notes. The topics and structures were relatively similar to the topics and structures given to the reading group.

Posttest
After the treatment, the posttest which was a test parallel to the pretest was administered. The results of both pre and post tests were analyzed through SPSS version 20.
Results

Nelson Homogeneity Test Result

The descriptive statistics of Nelson test is shown in Table 2 (M=25.97, SD=8.54).

Table 2. Descriptive Statistics for Nelson Test

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Skewness</th>
<th>Std. Error</th>
<th>Skewness Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>25.97</td>
<td>8.54</td>
<td>.418</td>
<td>291</td>
<td>1.436</td>
</tr>
</tbody>
</table>

As the table indicates, the skewness ratios showed that the distribution of the scores was normal (1.43 within the range of ±1.96).

Analysis of the Research Question

In order to answer the research question of the study, an independent samples t-test was run. As Table 3 shows, the mean and standard deviation of the reading input flooding group (\(\bar{x} = 5.72, SD = 3.32\)) and listening input flooding group (\(\bar{x} = 6.36, SD = 3.87\)) do not differ greatly on the pretest.

Table 3. Descriptive Statistics, Pretest of Grammar

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>25</td>
<td>5.72</td>
<td>3.323</td>
<td>.665</td>
</tr>
<tr>
<td>Listening</td>
<td>25</td>
<td>6.36</td>
<td>3.872</td>
<td>.774</td>
</tr>
</tbody>
</table>

Table 4 displays the results of the independent samples t-test run to compare reading and listening input flooding groups' grammar scores on the pretest. As Table 4 shows, the assumption of equal of variances was not violated \(p > .05\).

Table 4. Independent Samples T-test, Grammar Learning (Pretest)

<table>
<thead>
<tr>
<th>Levene's Test for Variances</th>
<th>t-Test for Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>F</td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.539</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>-.627</td>
</tr>
</tbody>
</table>

T value and the significance level (\(t (48) = .62, p > .05\)) are indicative of no statistically significant difference in grammar scores for reading input flooding group (\(\bar{x} = 5.72\)) and listening input flooding group (\(\bar{x} = 10.40\)) on the pretest. Thus, we came to the conclusion that
the students in the two groups enjoyed the same level of grammar knowledge before the treatment.

Further, another independent samples t-test (Table 5) was performed to compare reading and listening input flooding groups’ grammar knowledge on the posttest. The results of descriptive statistics in Table 5 reflects that the students in the reading input flooding group ($\bar{x} = 28.80$, $SD = 5.26$) performed significantly better than those in the listening input flooding group ($\bar{x} = 24.00$, $SD = 5.42$).

Table 5. Descriptive Statistics, Grammar Posttest

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>25</td>
<td>28.80</td>
<td>5.260</td>
<td>1.052</td>
</tr>
<tr>
<td>Listening</td>
<td>25</td>
<td>24.92</td>
<td>5.423</td>
<td>1.085</td>
</tr>
</tbody>
</table>

Table 6. Independent Samples t-Test, Grammar Posttest

<table>
<thead>
<tr>
<th>Levene's Test for Variances</th>
<th>T-test for Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>F</td>
</tr>
<tr>
<td>Equal variances assumed</td>
<td>.000</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
<td>2.568</td>
</tr>
</tbody>
</table>

As Table 6 shows, the assumption of equal of variances was assumed ($p>.05$). Independent samples t-test ($t (48) = 2.56$, $p = .01$, $p< .05$) showed a statistically significant difference between the reading input flooding group ($\bar{x} = 28.80$) and the listening input flooding group ($\bar{x} = 24.92$) on the grammar posttest. Consequently, the answer to the research question that asked “Do reading input flooding and listening input flooding techniques similarly affect the grammar knowledge of EFL learners?” was positive. In fact, reading input flooding techniques were more effective than listening input flooding techniques to improve the grammar knowledge of EFL learners.

Discussion
The findings of the present study revealed that input flooding (through listening and reading) could show an effective role in the development of intermediate EFL learners’ grammar knowledge. The results coincided with previous studies that explored the fundamental role of input in learning language and developing grammar performance. The findings revealed that when learners encounter sufficient amount of input, knowledge of grammar rules will be improved (Krashen, 1985). As Gass (1997) pointed out, when target features are presented frequently and learners are exposed to many examples of target forms, the process of noticing will increase more easily.

This study is also in line with Lee and Huang (2008) who showed that enhanced input affects learning grammatical items through reading tasks and facilitates the acquisition of the target form through exposing learners to the saliency of input. However, the results of studies on the...
effects of input flood are mixed and inconclusive. Han, Park, and Combs (2008) examined the influential effects of flooded input and input enhancement in language learning and concluded that enhancing input promoted the process of noticing.

Similar to the present study, Trahey and White (1993) explored the effects of oral and written input flooding on the learning of adverb placement in L2 English. Results revealed flooding was effective in assisting students to learn adverb placement. Accordingly, Hernandez and Rodriguez-Gonzalez (2012) explored the effects of input flooding and form-focused instruction (FFI) on the learning of discourse markers in L2 Spanish. They concluded that FFI combined with an input flood was not superior to an input flood alone, and that “exposure to an input-rich environment combined with meaningful task-essential practice is sufficient” (Hernandez, 2011, p.177). Furthermore, their study showed that input flooding significantly improved learners’ mastery of the target forms as well as their vocabulary knowledge.

The findings of the present investigation were not consistent with what have been explored by studies that revealed input-based instruction alone did not result in acquiring the target feature. Bowles (2003), Leow (2001), Kim (2003), and White (1998) showed that saliency of target forms through enhancement techniques might not be sufficient to produce any significant changes in the learners’ knowledge of that target form (English tense and grammatical point). Similarly, Nemati and Motallebzade (2013) investigated the effects of input flooding on improving EFL learners’ structural accuracy. The results of their study revealed input flooding did not have a significant effect on the acquisition of the target forms.

Conclusion

In designing materials including proper contents in EFL context, both teachers and educators need to find appropriate ways for teaching grammar. The result of this study could be of interest for teachers who attempt to facilitate learning complex syntactic features such as English tense and grammatical aspect knowledge. The pedagogical intervention in this study is helpful in an input-poor language learning context where learners have insufficient opportunity to encounter the target language outside the classroom. This study demonstrated that those students who were bombarded by saliency of input (as a relatively new technique for teaching grammar knowledge) made noticeable progress in terms of their knowledge of grammar tenses.

Tasks applied in EFL classes should be designed to produce great opportunities for learning target instruction. Presumably, when students are exposed to many examples of input implicitly, they direct their attention to the target features more easily, internalize the difficult structures for meaningful communication, and become more accurate in their grammar knowledge performance. It also needs to be pointed out that reliance on either reading input flooding or listening input flooding may not be sufficient, and thus a combination of both techniques would be more effective in teaching the target form. Moreover, it is unwise to presume that findings of this study found sufficient ground for pedagogical recommendations. There certainly exists the need to conduct more research on the differential effects of the grammar teaching aspects on different cross-linguistic structures with more improved instructional treatment.
References

